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TrE following investigation was originally undertaken as the foundation for certain
researches on the theory of vortex rings, with especial reference to a thecry of gravi-
tation propounded by the author in the Proceedings of the Cambridge Philosophical
Society (vol. iii., p. 276). As the results seemed interesting in themselves, and as
they also serve as a basis for other investigations, more particularly in electricity and
conduction of heat, I have thought it advisable to publish it as a separate paper,
especially as I cannot hope to find leisure for some time to complete my original
purpose.

The word “ tore” is used as a name for an anchor-ring, here restricted to a circular
section, and by  toroidal functions” are understood functions which satisfy LaPLACE'S
equation and which are suitable for conditions given over the surfaces of tores.

The first section is devoted to the general theory of the employment of two dimen-
sional equipotential lines in certain cases as orthogonal co-ordinates in problems of
three dimensions. From this we pass at once to the particular case where the two-
dimensional lines are the system of circles through two fixed points and the system of
circles orthogonal to them. Tt is shown that these satisfy the conditions of applica-
bility. By revolution about the line through the two points we have functions suit-
able for problems connected with two spheres. By revolution about the line bisecting
at right angles the distance between the points we have functions associated with
anchor-rings or tores. By the first system it is also possible to deduce functions for
what may be called a self-intersecting tore, and by the second for two intersecting
spheres. A second application is made for the particular case where the opening of a
tore vanishes and there is a double cuspidal point at the centre.

The second section is devoted to the development of zonal toroidal functions—that
is, for conditions symmetrical about the axis® of a tore. It is shown that for space
not containing the critical axis these are the same as zonal spherical harmonics of

# Throughout the paper the axis of a tore is taken to be the line perpendicular to its plane through its
centre ; the circle traced out by the centre of the generating circle of a tore will be called the circular
axis, and the circle by the two points above mentioned the critical circle.
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610 MR. W. M. HICKS ON TOROIDAL FUNCTIONS.

imaginary argument and (when the whole of space outside a tore is in question) of
orders (2n+1)/2. For space inside a tore we have a corresponding analogy with zonal
harmonics of the second kind. The properties of these functions are found to have
analogies with those of the ordinary spherical harmonics, but with essential differences.
The space outside a tore is different from that outside a sphere in being cyclic; in
general, then, the functions for space outside will not be determinate from the surface
conditions alone, The above functions are suitable only when there is no cyclic
function : it is shown how to obtain a function which will complete the solution.

The third section deals with tesseral toroidal functions, which come into use for the
most general case of non-symmetrical conditions. It is shown how the different
orders and ranks depend on each other, so that they may be calculated in terms of
two. Integral expressions are also obtained, as in the second section, which are needed
in finding the coeflicients in expansions in series.

The fourth section briefly notices the functions suitable for tores without a central
opening. These functions bear the same relation to the foregoing functions that
cylindric harmonics (BEssEL's functions) do to spherical harmonics,

In the fifth section a few examples are given of the application of the method, such
as the potential of a ring, the electric potential of a tore and its capacity, the electric
potential of a tore and an electrified circular wire whose axis is the same as that of the
tore, the potential under the influence of an electrified point arbitrarily placed, and
the velocity potential for a tore moving parallel to its axis, as well as the energy of
the motion.

Of previous writings on the subject, or nearly connected therewith, I am only
acquainted with two. In RIEMANN’S ¢ Gesammelte Werke " (chap. xxiv.) is a short
paper of six pages, “Ueber das Potential eines Ringes.” He arrives at the same diffe-
rential equation as (7) in this paper, points out that a solution can be expressed as
a hypergeometric series in several ways, and that each function can be expressed in
terms of two, which are elliptic integrals of the first and second kinds. The paper is
a posthumous one and is not developed. There is a note on the same subject by
W. D. N1veN in the ¢ Messenger of Mathematics’ for December, 1880. Though not
bearing on the same subject, a paper may be mentioned by C. NEUMANN, “Allgemeine
Losung des Problemes iiber den stationiren Temperaturzustand eines homogenen
Korpers welcher von irgend zwei nichtconcentrischen Kugelflichen begrenzt wird”
(H. W. Scamipr, Halle). This is a pamphlet of about 150 pages. He uses co-ordinates
analogous to those in the present paper, but the method of development is very
different. The functions are spherical and cylindric harmonics of real argument, and
those of the second kind do not enter. He considers the stationary temperature in a
shell bounded by non-concentric spheres; in an infinite medium in which are two
spherical cavities ; and similar cases when the boundaries touch. Its interest in con-

* The greater portion of the following pages was completed before I became acquainted with this
paper of Rienany’s or with that of Neumany’s mentioned below.
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nexion with the following pages consists chiefly in the fact that the potential is
expressed in a series of the form

S(w)sF,(v), G, (v)
and that the orthogonal co-ordinates employed are closely allied.

L

GENERATL THEORY OF CONJUGATE CURVILINEAR CO-ORDINATES IN THREE
DIMENSIONS. SPECIAL CASE.

1. Tt is well known that if LAPLACE'S equation be referred to a system of orthogonal
co-ordinates u, v, w it takes the form

L (B (T

()46
) +(2)
ol ol

Let us now take u, v to be any conjugate functions of p, z; p, z being the cylindrical

co-ordinates of a point. Also take w to represent a series of planes through the axis
of z, so that w= tan™! y/x.

Then u, v, w are orthogonal surfaces and

oo E)-{
VW:%);3

where

So that equation (1) becomes

o [ o ¢ 1 8¢
ou (P bn>+bv <’D bv>+p {<§Z> +<bu> } bwz_o
In this write ¢=1/,/p, then

O | O A Spf?
ou? ey ot + { +§>—7;E

} ;I:)<615~+S{;:>+ , {Ziﬁ l_l_e:: }i$=

4 K 2
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Here since u, v are conjugate functions of p, z

o? o’p
ou? +

(gg>2+<b£> ‘<au> j_ <b_u>9=é (say)

op, oz
so that

out ' & v?

o O, 252{61‘P+i¢,}=0. Y )

By putting bl;fzo we get the equation for functions satisfying conditions sym-

metrical about an axis which by an obvious analogy may be called zonal functions.
In general, put Y=y cos (mw-+e), then ' must satisfy

i AT At SV
sur T o~ appr VO

When u, v are functions such that 1/(p€)? is of the form 4( f(u)+F(v)), it is possible
to obtain solutions of the form y=3X,,,Y,, cos (mw-+4a) where

s (4mp—1) f ()X 27X

Cdu?

ddYZ‘ 2= (4m*—1)F(0)Y =n*Y

which are such that X,,, are constant when u is constant and Y,,, constant when v is

constant.
As an instance of functions satisfying these conditions we may take the elliptic

co-ordinates
p=acoshucosv z=asinhusinv

Here
11 1
p*E2 cos?v  cosh?u

And the equations for the functions X, Y are

XL <~4m2_1 :j:n?) X=0

du? 4 cosh? «

2 21
rY <4m :l:’n2> V=0

dv? 4 cos?v
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The first produces functions analogous to those discussed in this paper—the second

. . T “m+1 .
spherical harmonics of argument 70 and order T The surfaces = const. give

confocal spheroids. Since v/p=1+/a cosh u cos v, it will result that ¢ is expressed as

the sum of terms of the form {AP(u)+BQ(u)} {CP'(v)+DQ’(v)} cos (mw+B), where

P’, Q" are spherical harmonics of argument ;—v, and P, Q are spherical harmonics of
imaginary argument.
In the applications that follow it happens that u, v are such that p?¢? is a function

of w only, say f(u); in this case we obtain solutions by putting /=1 cos (nv+p),
where

d™yr o 4 AmP=1\ =~
w0

The solutions of this equation for m=0 may be called zonal functions, for n=0
sectorial functions, and for m.n general, tesseral functions. If U,, U’,, are two
independent solutions of this equation the general value of ¢ is given by

v pp=33{AU,,, cos (nv+a) cos (mw—+B)+A'U’,, cos (nn4a’) cos (mw—+B')}

If ¢ be given over any two surfaces w= const., it is clear that the constants can be
determined in the above by means of Fourier’s theorem. This will be more fully
discussed in the sequel.

2. Before passing on to particular cases, there is one remarkable result to be noticed.
If in the equation transformed as above, we put y=1v cos (Jw-+y) then ¢/ satisfies
the equation ’

Py N
du? + ov? =0

Hence if 4 be any two-dimensional potential function, then \—ﬁ-}—) ¢ cos (Jw-+y) is a
three-dimensional potential function. Since this expression changes sign when w
increases by 27 it is not suitable for all space ; but a diaphragm must be supposed to
extend from the axis of z to infinity in one direction, and to be impassable. Though
the result is interesting it does not seem to carry important consequences, as there is
not sufficient generality in the expression. We may choose the form of the surface,
and certain other conditions, but all the surface conditions are not arbitrary.. Thus let
us take an anchor ring divided by a plane through its axis. Let us keep the curved
surface and one end at zero temperature, then the distribution of temperature at the
other end is determinate though its absolute magnitude is arbitrary. To prove this,
we notice that if (a, b) be the radii of the circular axis, and generating circle respec-
tively, and 7 the distance of any point from the circular axis
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—a)? 27
1# ___log }-—ll Loy (B_(g%_"

and

,(p=a)+#
=52 tog O cos ()

This is to be zero when w=0 .". yzg and

A —a)? 422
t==" log g (=Pt o v
Z A p Z) 2

But now the distribution of temperature at the other end is given by

2 .2
=gy, log =t
leaving only the absolute magnitude A at our disposal. Further, there must be
supposed a generation of heat all along the circular axis. This example serves to show
the artificiality of solution given by this form.
3. For the case of an anchor ring, or tore, it is at once evident that the proper
functions v, v to take are the well known ones given by

p+a+4
—a—}—m

u+tvr=log ———
viz. : v=const. a series of circles through two points (4a, 0) and u=const. a series of
circles orthogonal to them, and each containing one of the fixed points. If these be
made to revolve about the line through the fixed points, we get functions proper for
two spheres (u) ; or the surface formed by the revolution of a circle about a line cutting
it (v). If they revolve about the axis of z we get functions proper for circular tores
(u) ; or for two intersecting spheres (v). It will be useful to set down here in a com-
pact form, formulee relating to these functions, which will be required later on. Most
of them are easily proved and are set down without proof.

*+(pta)? )
— 1
U= 2log72+('O o)
v=—tan~ —~+t p—a I (4)
= tan~l— 2C:z~é
prtF—a J
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. 61¢+vi + 1 I
p+é@ a’;ﬁm 1

. sinh %
—q
P cosh w—cos v

T
.

—_~
(S

~—

Z=q

cosh % —cos v v

du ¢ cosh w—cosv sinh u
dn~ > @ T oop

whence the statement made above that pé=f(u). ‘
Let R, 7 be the radii of the circular axis and normal section of a tore (u); ' the
radius of a sphere (v); then

R2—2=¢2 R
i
cosh u==—
r
R agr +« + « + « « .« . . (6
sinh u—‘/ "77_-_=?~. (©6)
[42
SllH) '—;}j,

Further, if 7, the radius of o tore to a point P (u, v) make an angle 6 with the plane
of the ring

- 7—1 cos @
COS U= P—
T R—rcos 0
. \/R?—-? sin 0
sIn V=
—rcosd

‘With the above values of (u, v) the general equation for toroidal tesseral functions is

d?
dl‘f;‘ glll_l_____m_.* =0 . . . . . . . .. (7)

4 sinh%

There is one case in which the functions used above become nugatory—viz. : when a
is zero, or the tores are such that R=#» and they touch themselves at the origin. In
this case the proper curves are the two orthogonal families of circles, touching, the one
set the axis of 2, and the other the axis of p at the origin—viz. :
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(wtvi)(pt2z)=a )
U= ;,Eipzz
az
== 4
au
P= 0t . . . (8)
aw
= +*
g o _UE0
dn™ > p*+2T o«
—
P J

and

(7~ 4/1L~——-1
dud \,lr— C4w? $=0

1t will be shown that between the latter surfaces and tores there is a similar rela-
tion to that between cylinders and spheres, and between the functions to that between

Spherical Harmonics and BesseL’s functions.
4. The potential due to a ring of radius b, centre at (0.2") and plane perpendicular to

axis of z, 1s

b= r bdo

oV (z— )2+ p*+ > —2bp cos ¢
=& ol 7T
T 'V 2p)g8/a—cos 0

In the case where it is the critical circle

29 + 2 (/2
a="TPFT_ othu
2ap

and here
N j " o
V=| /ooth u—cos 0

In general the distance between two points is (z—2")*+ p*+p*—2pp cos (w—w'),
which expressed in bipolar co-ordinates becomes

2a? . .
e ;-{cosh u cosh w'—cos (v—v")—sinh u sinh « cos (w—w’')}
(cosh u—cos v)(cosh u’ —cos v')



MR. W. M. HICKS ON TOROIDAL FUNCTIONS. 617

IL.
ZONAL TOROIDAL FUNCTIONS.

5. In the case where the conditions are symmetrical about the axis, ¢ is independent
of w and is of the form

b= /\/cosh ©U—CoS v 008V Suh, cos (nv-+a)

sinhw

where i, is the general integral involving two arbitrary constants of the equation

d*r
duz 2¢+

4 smh T

From the potential of a ring, at the end of the last section, it is at once seen that
a particular integral for space, not including the critical circle, when n=0 is

o a9
o=+ sinh uj' 04/ cosh % —sinh u cos 6

In the same way, calling the potential of the ring ¢, it may be shown by finding
°® tha
oz

4 ae
;= 4/sinh uJ

o(cosh «—sinh u cos 6)3

From analogy with this we might assume

Y= 4/sinh uJ’ 4

o(cosh % —sinh % cos )7

2n+1 2n

and by substituting we should find it possible by putting p= or ——2;1 to satisfy

the equation. But the following, by making use of theorems already proved for zonal
harmonics, seems to be more direct. Putting, in the differential equation,

Y=4/sinh v.P

l2+ coth ad—P—( n—gn+HP=0 . . . . . . . (9)

whence it is at once evident that P, is a zonal spherical harmonic of degree 47,2-;- 1’
with a pure imaginary for argument. HEINE, in his ¢ Handbuch der Kugelfunctionen,’
MDCCCLXXXI. V 4L
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has to some extent considered spherical harmonics with imaginary argument, but he
has not developed them, at least for fractional indices, in a form suitable for appli-
cation here. Consequently they will be here considered independently and with
especial reference to physical applications. Hereafter, C, S will be used in general to

represent cosh u, sinh u, respectively.
We have then in general

$=1+/C—cos v 3(A,P,+B,Q,) cos (nv+2)

where P,, Q, are two independent integrals of equation (9). We first discuss the
integral already obtained
P,;S’LJ——I.........(IO)

: —
(C—Scos )z

0

It is well known that this integral is the same as
" ol
[(0=Secsgyzas . . . . .. . . . )
0

the second solution obtained above ; this may be easily shown by the transformation
{(C—8 cos )(C—S cos #')=1 or by means of the sequence equation (14) below.
6. Duscussion of P,

We have
dpr, <2n+1> = S—Ccos @
—_ s 2n+3
du 2 g (C—Scos )z~
0
‘Whence
28 dpP,
27[,-'—1 ZZZ‘:P”.‘FI—CP” . . . . . . . . . (12)

Similarly from

dr, 2n-—1(r 2n—3
@ =a”—2-»fo(c—s cos 0) * (S—C cos )20

28 dp,

:2'71,—:1 E@?=CP7L—P”—1 . . . . e . . e . . . . (13)

Combining (12) and (13) we have

(2n+1)P,,—4nCP,4(2n—1)P,.;=0 . . . . . . (14)

This sequence equation may also be deduced at once from (10) or (11).



In (14) put

with

then

or

where

and
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2n—2)2n—4)...2

P”=(2n—1)(2n-—3) ... 3.1

Ay

Py=u,, Pi=u,

(2n+1)*

un+2 zcun+1+2 (2 +2)

=0

Unpog=— 2 Cun+ 1—Cully,

_ (2n+1P®  (@n41) =141 1 1
T 2(2n+2)" @Ca+1)2—1" " ' 22 2n42

619

It is clear from this that w, is of the form a,u,— B, where a,.B, are rational integral
algebraical functions of 2C; a, of degree n—1, and B, of degree n—2. The first
three values are (writing 20=u)

200 = uo
Uy =1
Uy =1Ly —$1U

U= (2 —0y)u; —Faw,

We can now show that a,, B8, are of the form

0=l "V 01 1 230 20 L

_I_ Oy =1 + ..

For supposing «, of this form, ¢.e., wanting every other power of z, it follows at once
that a,,, is of the same form, and it is seen above that a; is of this form, whence the
statement is generally true, and so also for S,

Now e, satisfies the equation

with

0, =20t,_) = Cpglly_y

=0 o,=1

Hence substituting the above value for a, we must have

also

Oy p=— 0’%—1.7' - cn—gaﬁ—g.r-—l .

g =Cpm10= + .. =1
412

(15)

(16)
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Hence
Uy p== _(077—2 Op—gr1tCimge Unegryt « o +02r—1a2r—1.r—1)

From this

aﬂ.1=—(cﬂ—2+cﬁ_3+ FEI +Cl)
o= {072—2(671—414+ - +Cl)+cﬂ_3(6”_5+ - .+01)+ PN +C301

= Sum of products two and two together, with the exception of all products where

the subscript numbers are successive.
Assume that (—)a,,=sum of products of the ¢, up to ¢,_, r together with the

exception of any in which successive subscripts occur. Then

i1 =(—)"*{c,o(prod. up to ¢,_,, r together, &ec. .. .)
+Cit—3( E2) E2) 071—5 ¢ o )
. }

=(—)"*{Prod. (r+1) together up to ¢,_, without successive subscripts. }

Whence by induction the assumption is seen to be universally true. It may be
thus stated, a,, is the sum » together of the terms

3* 5% 7R (2n—3)?
24 4.6’ 6.8 " @n—2)(2n—4)

all products being thrown out in which, regarding the numbers in the denominators as
undecomposable, a square occurs in the denominator.

‘We have
a’ﬂ.O = 1

_ (4n—38)(n—2)
B = T (1)

This result is of very little use for application. If the co-efficients (a,) are needed
for particular values of x they can be very rapidly calculated by means of equation (15),
while if their general values are to be tabulated, equation (16) will serve to calculate
them in succession.

Further, 28,is the same kind of function as a,, in every way except that it does not
contain ¢, ; in fact 28, is the same function of ¢,, ¢y, . . . ey, that a,_; is of ¢, ¢y, . -
Cu—g ; calling this &’,_; we can then write
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7
U= o, — %o, 11,

u), %, may be expressed as elliptic integrals, viz. :

(" o . do o I
“O—L\/C‘:S‘Eage—w k jo V/ 1—I7 sin® 0 = 2VHF

t
L (17)
- R DA A —— 2
w=|"v/C=F cos 000= [iv/i=Fse o= ﬁEJ

Vi o
where
o 25 n__ L

k—C+S b T(C+8)2
or

]c2= 1— 6-2“ k’2= 6_2”
and

, . 1
Hence

(2n—2)2n—4)...2/ a, .,
(2%—1) .03 \\/k’E—JQ_\/k -0‘”_1F> e e e e e (18)

Pn'—_—z

where we may suppose the numerical factor dropped.if we are dealing with the
differential equation, but not if we are dealing with the sequence equation.

The value of P, when =0 is =

" " U=oc0 18 o

These statements are at once seen to be true. Since w becomes infinite along the
critical circle it follows that the P, are not the suitable functions to use by which
to express functions which are finite in spaces containing the critical circle, 7.e., within
any tore. But it is finite and continuous for all space outside any tore.

7. If we put for P, in equation (9) P,Q’, we find in the usual way

, % oy,
P,Q,=BP,+AP,[ G
Regarded as an analytical solution of the equation this is complete, but in this form
it is altogether useless for application. Now HEINE® has shown that the spherical
harmonic of the second kind is expressible in the form

*® a0
Qu(x)= j o (x—/@*—1 cosh @)*

* ¢ Kugelfunctionen,” Kap. iii.
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We first show that this with a modification satisfies the equation (9). For putting

? a6
an 2n+l . . . o . . . . . (19)
o (C+8coshi6) 2

du _ 9 27L+3d0

dQ, 2041 $+Ceosh
5 (C+Scosh @)z~

Cngn 2n+1\2 2n+1
e

__.2_S_j inh a-(o+scosh 6)-"% do
0

on+1\2 . 20+1(  cosh 646
=< ) Q.+ 23 s
o (C+8cosh 6)72

d 2S 2n+3

dQ,,_I_ oth 29— (@ﬂ)Qﬂ zn+1S OS+(C*—1) cosh 64
(C+Scosh )z

Here also as in the case of the P functions it can be easily shown that

2S  dQ,
on+1 du” Qi1 —CQ

25 dQ,__
2n—1 du "~ Q=Quy

and

(2n+1)Q, 4, —4nCQ,~+(20—1)Q,_,=0
Hence as before

(2n—2)
anm(“zﬂh 2“ 7:—1’”0)
where

”_J de
07 )y 4/C+Scosh @

B r d6
Y= (C+S cosh 0!
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In these change 6 into 26, theun

2“‘” de

Y= v/ C—=S¥2Scosh? 4
s r a0

b= 0 (C—S8+28 cosh? 6)t

623

Again, write cosh §=sec ¢, then sinh f=tan ¢, df=sec ¢pd¢p, and when =0 or =,

=0 org

Hence

= j" de
0V C+S—=(C—S)sin® ¢

=2/k'F’
Also

' cos? pd¢p
”1“2[ (C+S—(C=8)sin® ¢}}

_ 2 F W2 —1 sin® ¢ "
TV (117 sin® ¢
_ 2 2 F’ ¢
TV R A=k sin® ¢

Now
¥ AF F— 2 sin® pd ¢
dk' ™ Jo (1 =% sin? ¢)?
T de -
- J’O (1—k"?sin? ¢)3 ~F
and

dF’ Lo
dlc’ "E

U= \/lc’(F, E)
and finally

Q=2 gz 2. { (F —E) — 4§/ FF }

(20)

(21)

(22)

The value of Q, for =0 is o, and for u=o is zero. Hence Q, is suitable for

space within a tore, and not for space including the axis.

8. The foregomg value of Q, has been obtained from analogy with that for P,; but
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in the same way as P, (for space outside a tore) was obtained from the potential of a
ring, so also may Q, be determined from the potential of a point at the origin, for
space not containing it, 7.e., for space within a tore. For the inverse distance of a

point from the origin is

1 Q —Cos v
@ CHcosv
Hence
1
oo 5(AP,+B,Q,) cos (nv+a)

Now, firstly, since this is to be finite throughout all space not including the axis
A,=0. Also it is clear since C> cos » that 1/,/C+ cosv can be expanded in a series of
powers of cos v, and therefore in a series of cosines of multiple angles only. If this be
done the coefficient of cos nv must be B,Q,.

"Hence by Fourier’s theorem

g T cos nfdo
BQ=[ /O cos 0

If we define Q, so as to make #B,/2=(—1)",/2, then

T cos nddo

V2= (‘")”f o/ Ccos 0

™ cos né
=jomda..........(23)

We will now show that this expression for ), agrees with the former one. Inte-
grating by parts and dropping ,/2 as unnecessary in the sequence equation

™ sin 6 sin 6

QU —y==[ F con by

also
[T cos n8(C +cos 6)
(=YQ=| “rmeay Y
_CJ’" - cos nd J’"cosnecosf)
T )y (C+eos8)t T 1) (C+cos 6)2
Hence

*  cosnd r cos (n+1)0
0 (C+cos 6)*

(2n+1)Qu—)"= Cfo CreosopT

o ™ cos nd ™ cosn— 10
(@En=1)Qu(—)'= C.[O (C+cos 6)} jo (C +cos 6)*
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™ cos n— 10 —cos n+ 16
“(2n—1)Qu_ 1+ (20+1)Qu= (—)"“OL, (C+cos 6)}

™ sin nd sin 6

=2(_)n+10j‘0m
=4nCQ,.

The same sequence equation as before. Hence it is only necessary further to show
that Q,, Q, are the same in the two cases.

Now
_ dé
Qov/2 ,(\/O+ cos @
S /\/C—|—1—231112
j ag
\/(;+1 04/ 1—N\?sin?@
where
2
A
A T C+1

If C, S be eliminated between N and *=2S/(C+S) there result the equations

=t F= 1+x

Hence by the second quadric transformation

Fy=(1+%)F’

and since
X=2/F/(1+)
Qu=2¥F".
Again
cos 2040
—Quv/2=Nv2 [ »/1—N?5in? 0
=V 2(9F, — (1-M)F}
Now

EN)=n T O L rr(v)
_v{}\ %%,(1+k’)F’+(L+k’)F’}

MDCCCLXXXI, 4 M
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dr’
which on reduction and subst1tut10n for v becomes

EQ )=1—+—]-7 (E—FF)

N —Q1\/§=-\71—2—-]6=;{4E'—-2WF’—2(1 +E2)F'}

22
=% (E'=F)

and

2 2 % ’ )i ’ N
Q”—2§22—1§ {\/7/(F —E)—4e u-n/ic'l?}

We have in fact proved that

i a6 cos nfdo
g mr=(—1)"v2 J’ v/cosh u+ cos @

(cosh #+ sinh w.cosh 6) 2

By means of the identity
EF+EF—-FF=

or

T ,
E—F _F<2—EF>

Q, can be expressed in the following manner, viz.:

T e v s )

9. The following relations between P and Q functions will be useful in applications,

viz.:
2 3

(0‘) Pn+1Qn_PnQn+1= m

(18) P,nQn—PnQ,ﬂ=§ Coe e e e (24)

@ PuQun—PuaQ.=(2n+1)3 )

They are easily proved, for substituting for P,,;, Q.,, from their sequence equations
it follows that
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(20+1) (P11 Qu—PQu11)= (20— 1)(P.Quey — P1eyQ.)
=P,Qu—PQ,
=4{EF —-F(F'—E)}
=4(EF+FE —FF)
=27

Again

23(P',Qu—P.Q) = (2n+1){Q(Prss—CP.)—P(Qu— OQ.)}
=(2n41)(P,,,Q:—P.Qu41)

=T

In a similar way (y) may also be proved.
10. As bearing on the question of the convergency or divergency of series occurring

in any investigation it will be important to consider the values of P,.Q, when = is
infinite. Taking the expression for P,

™ 2n—1
P,=("(C—8 cos 6) 7 do
0
it is clear at once that
P,,<(C4+S)P,>P,

. . . ap . ..
Further since P, increases with «, 7 8 positive, hence P,,,>CP,
Also from

? de
Qn= 2n+1
(C+Scosh 0) 2
0 .

1
Qﬂ;+1 < C+ SQ”

Also since Q, decreases with u, %% is negative, and therefore Q,_;>CQ,

Hence

P%+1Qn+1 < PﬂQw

but tends to the limit unity, so that the series

‘ 2P,Q, is divergent.
But the series
3P,Q, cos n(v+a) is convergent,

except when v-a=0.
4 M2
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Further if v’ >u (P, Q’, here standing for P(«), Q(«))

C+8
7l+1Q’7l+1 < ¢+ g,PuQ ”

Hence the series

zR,u<z<C+SY

O+

and is therefore convergent. Much more then is the series 3P,Q’, cos w(v-+a)

convergent.
Again if w' <u

C+8
n+1Qn+1 ~ C +S P ﬂQn

and as before, the series 3P",Q, cos n(v+e) is always convergent.
11. Both the functions P,.Q,, except along the critical circle and axis respectively,
make ¢ finite, continuous, and single valued when n is integral. The first statement

has already been proved, the second follows from the way in which %’ Cfi% are expres-
sible in terms of two successive P, or Q,, and the third is seen to be at once true by
integrating %’ round a circuit lying on any tore uw= constant, when I(ggdﬂ is seen to

vanish. Now the space is a cyclic one. Hence the above functions are not suitable
for expressing any general conditions in the space without a tore, though they are
suitable for any given surface conditions whatever.

Still keeping to physical analogies in order to obtain solutions suitable to this case,
we will consider the potential due to a vortex ring or electric current along the critical
circle. This would give cyclic functions, but also certain surface conditions. In any
particular case then it will be necessary to take account of these surface conditions
by means of the P, or Q,. This potential is measured by the solid angle subtended
by the ring.

The (solid angle) X u can be expressed in the form ;—c.s. denoting cos v, sin v,~—

. mC+c—S cos ¢ de
2},,7,-_\/'2—# sin U\/C_O[o s*+Ssin® ¢ 4/C—Scos ¢

or
ksin v \/U+0+\/C
2 — W /S{ JO—F—S H( k)
CHe— \/C
e
where
28 25

M= JGopes T T JO=a1s



MR. W. M. HICKS ON TOROIDAL FUNCTIONS. 629

To complete the general expression for ¢ we must therefore add a term

A sin v f 7cosh %+ cos v —sinh u cos¢ deo
o sin®v+sinh®w . sin® ¢ 4/cosh u—sinh w cos ¢

(25)

We shall denote this by the letter AQ, so that the solid angle' varies as O/ C—c.

I1L.
SECTORIAL AND TESSERAL FUNCTIONS.
12. The differential equation which has to be considered in the general case is

Y, 4 —1
du? ¢_4smh9ul,} O v e <7)

which in the case of sectorial functions becomes

_d_%k 4m?r—-1 _
du® 4 sinh %‘ll—

In the rest of this paper we shall call # the order of the function and m the rank.
Calling the solution of (7) .., we proceed to show how i, can be expressed in

terms of Yi.q, Yy
Dropping the m for the time, assume

Pusr=t - S0)+ ()

Then writing (4m*—1)/4=\, and substituting in-the equation which ,,, satisfies,

‘P‘ﬂ "P‘

L and—‘lf—we

and -

making use of the equation for ¥, to express
shall get

l/J,’n+1_ ('n"l' 1)2¢n+1+“§_2¢n+1
=] — ot )by o =T () w4 — Ty

Now choose f, ¢, so that

Fr=(entr) oy (=0
#'—(@n+ 1)p+2'=0



630 MR. W. M. HICKS ON TOROIDAL FUNCTIONS.

If we try ¢=AS, we shall find that both the equations

F—(2n+1)f4202AC=0
2’ —2nAS=0

can be satisfied simultaneously if f=2AC.
Hence, whatever A be, the equation

) =A<n0¢n+ S‘i‘ﬁ)

du

holds.
Again, we may also determine f, ¢, so that

dr,
R

In this case the equations for fand ¢ are

Fren— )y = 1 ®)=0
#'—(En—1)p+2" =0

which are satisfied by ¢==BS, f=—nBC.
Hence, {s,_;=DB(—nCy,~+S¢,,).

The toroidal functions themselves are y/,/S, and the two particular integrals are

represented by P,.., Q.. Tor these functions the above equations become

Pm.7z+1= An { ZSPIm.n+ (2%—]— 1 ) CPm.n }
Pm.ﬂ.—l = Bn{ 2SP,m.n"" (21?,— 1 )CPmm}

and similar equations for the Q.
Since the solutions P, , of the differential equation are multiplied by an arbitrary

constant, we may, when we confine ourselves to one of the above equations, put A or
B=1, and after solving the equation of mixed differences multiply the result by an
arbitrary constant. But if we wish to combine both formule so as to eliminate the
differential co-efficient in them, then the P in both must be the same, and a relation
will hold between A and B. This we proceed to find. Dropping the (m) as unneces-
sary, write .
P,=A, {2SP,,+(@2n—1)CP,_;}
and substitute therein

P,_,=B,{2SP,—(2n—1)CP,}
‘Whence
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Pn = An—an4SQ<P ”ﬂ+ gP,7z - 47?/24_ 1Pn - (2Zg21>2>

which since

—1 mh

P n-l——P’ 4 Pn—§

P,=0

becomes
P,={4m*—(2n—1)*}A,_,B,P,
Hence
1
~@mtn—1)Cm—n+1)

AusB,
If we choose

1
An_1=2(m+n)‘—1

then =2(m—mn)—1

B%

these conditions are satisfied, and the formulze agree with those found for the zonal
function when m=0. Hence

2SP’m = (277?;-'—2%-‘- 1) mat+lT (2%-‘- 1)CPm.n}
2SP T (27)1’_ 2n+ ]-)Pm.n—1+ (2“’— 1)0Pm.1LJ .

From this there follows at once the sequence equation

(2m+20+1)P,, .1 —4nCP,, ,+(20—1—2m)P, .1 =0 . . . (27)

In this write

P 2”‘1|n — y
"= G+ In— D@m+20—3)... Cm+1) "
Then
@n—1p—dm
Ui, a+1T 20 mn+ 2%(27%—2) ,n n—]_—O
whence, if

_ (2n—=1)2—4m?
T (2n—1)2 —

and a,,,, ., are the same functions of ¢,,,, &c., as a,, a’,_; are of ¢,

@2n—2)2n—4) ..
Pm n (2m+ 2?2 1)(277Z+ ryAl__g“ (27?? + 1){ MY m 1= m n—le 0}

(28)

These formulee hold for the two particular integrals P,, and Q,, and they
express the tesseral function of any order and rank in terms of sectorial functions
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and tesseral functions of the first order and same rank. In the same way as was
proved in the case of zonal functions, it may be shown that

Pm.n+1Qm.n - Pm.an.n+ 1

_ @n—=1-=2m)(2n—3—2m) ... (1—2m) _
=@nsirzm@n—i+am .. 3+ 2m) Lo PusQu) - o (29)

also that

, (27’1/ 1-— Zm) (1 - 277?/) P m_lQm,() - Pm.on.]
P m.an.n N nQ = (2n + 1 4 277%) (3 + 27n) 2S ¢ * (30)

13. In the same way as relations have been found between successive orders of
toroidal functions, relations may be found between successive ranks.
Not putting the order n in evidence, write

Y1 = but PP

Proceeding as before it will be found that £, ¢ must satisfy the equations

,, 2m+ —1 C o dmr—1\ |, w
=R (e g =0 L
// 2 1 7/ (
¢~ ”g': $+2/'=0 ]
which are satistied by
qS=A, f=_2m+ lA(_J

leading to the relations
, C
Pm+1 = A—m<P w nl—s' Pm)

In precisely the same manner it may be shown that

Pm—-] = Bm<P/m +m(§)Pm>

and that ~
4
AmBm+1_4n9 —(2m+1)*
If we put
2
An= 2m+2m+1
then

2
2n-—2m-+1

B W =
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and when m=0 the P, have the same values as for the toroidal functions already
discussed.
Finally then,

28P,.,.= 2mCP,,+(2n+1 + 2m)SP, 1. } (31)

28P,,,=—2mCP,, .+ (2n+1—2m)SP,_, .
from which the sequence equation follows at once

(2m42n+41)SP,,,+4mCP,4+(2m—20n—1)SP,_,=0. . . . (32)

If we write in this
P 2m(2m—2) ... 4.2 (C)"JW

"= @mA 1+ 2m)@m—1+2n) . .. (L+20)\S
then
@m—1y—dn? S\
U1+ 20n+ @m—19—1 \0 Upey =0

By combining the formulee (26) and (31) it is also possible to obtain relations between
order and rank together. For instance, from the first of equation (26) and the second
of equation (31), we get

(2m+ 2n- 1)Pm.n+1= (27@ +1 )CP”“’_I_ 2SP/’”'”
= (21’L+ 1)0Pm”— 2mOPm.u+ (2n+ 1— 2’m’)S]?m-l-”
fd (2’)’2/—"- 1— 277’&) (CP;;;_n_i_SPm—l.ﬂ)

with three other relations.
The four formulese are

(260&, 310&). o Pm,n.,.l—CPm.n_SPm+1.n=O \]
(260. 318). (2n414-2m) P,,..1—(2n—41—2m)(CP,u+SP,_,,)=0 | (320
(268. 312). (2m—41—21)(Pppey—CP,,) — (204 1+20)SP, =0 P

(268. 31B). (2m—+1—21) Pyt (2m—1+21)CP,,4(2m—1—20)SP,_1,=0 |

We are now in a position to reduce still further the relations (29), (30).
For putting n=0 in the second of (32a)

2m~41)P,. ;= —(2m—1)(CP,, o+ SP,_.,)

whence

(27’]’1,+ 1) {Pm.lQm.o—"Pm.OQm.]} == (27/}7”—' I)S (Pm.()Qm—l‘.()'— Pm—l.on.O)
MDCCCLXXXI 4 N
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But (32)
(2m—=1)SP,,y=—(2m—3)SP, _,,;—4(m—1)CP,_,,

Therefore the above

=8 {PQo0—Po.oQuo}
But from the first of (32a)
S (Pl.oQo.o —P o.le.o) = Po.lQo-o" Po.oQo-l =2m
Hence

2n—1=2m)(2n—3—=2m) ... (1—=2m)
Pm»z L ma\dm. == ( .
11 Q= PnsQuny =2 (2n+142m)2n—1+2m) ... (14 2m) m

and (33)
ro_@n—=1=3m)... (1=2m) =

P,) Gma T Xl
1;.7Qn.n Pm.nQ m Cn+1+2m) ... (1+42m) S

In the same way, or by substituting in P’,,,Qu.—P..Q', the first of (26) or the
first of (31), there follows

P m.n+1Qm.n - P m.an.n+ 1 = S (P m+1.nQ1}z‘u - Pﬂme+ 1.7;)

14. From the formule now developed it is possible to find the complete integral of
the general differential equation. But as in applications the co-efficients are deter-
mined in terms of definite integrals it will be well also to consider the solutions from a
different point of view. If any potential function be expanded in a series of multiple
sines and cosines of v, w, multiplied by +/C—c, we know that the co-efficients must
be of the form AP+BQ. Now such a function is the inverse distance of any point
from a fixed point. Let us choose as fixed point, to simplify the expression as much
as possible, a point on the axis of z within the critical circle, say (v’.7.0). Then the
distance of (u.v.w) from this is

\/(O_‘_‘._.;z.)/%,rﬁ{oa+o—ss cos w} b

_ . NAYES!

Hence if 4/ {CC +¢—SS cos w}
will be of the form AP, ,4BQ,,. Further, for points within the tore u’ (v.e., u>w’)
A =0, whilst for points without, and therefore including the axis (v <u’), B=0.

Hence

be expanded in.a series, the coefficient of cos mw cos nv

pas— cos mw cos nudwdv
\/C/"I'lf f e LT, T 7'=A-Pm.u or BQm,n

0 Jo v/TCC + cos v—S cos w}
according as uSu’.
Now if the fixed point be on the critical circle B is always equal to zero and
(U=8=w)
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2
COS MW COS nY
= dwdv

a= ] s

Here A=0 unless n=0. Hence

cos mb

AP.=tn| 2
We have already found that

" a6
P\ — =7
0 {C—8cos 0} 2~

we are therefore led to expect that in general

i cos mBdo
Pm,nm '————_EZ“‘E
o {C—Scos 8} 2

which can easily be shown to be the case.
By taking the fixed point at the origin we have

T oS Mmw cos nvdwdy

BQuac | 0 [ Y

Here B=0 unless m=0, and then

Q ocr cos 1
02 Joa/ C=cos 0

an expression which has been already found.

635

These expressions as single definite integrals are already known to be solutions of

the differential equations, and are given by HEINE in his ¢ Kugelfunctionen.’

They

may easily be proved directly, and connected with the values found already by the

sequence equations, and the values for Py, Py, &e. Thus writing

" cos mBdo
Pm.n::A 2n+1
0 (C—Scos 0) 2

the integral is easily shown to satisfy equations (32), and the only further condition

requisite is that A shall be chosen so as to make it agree with P,,, P,,_;.

Now

8 d0
Po.n_—: _‘ 2n+1
o (C—Scos 0) 2

4 N 2
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Hence

cos mOdo

A=1land P,,=\ ——— ==
o (=S cos 0) 2

Returning to the general integral, since u, u’ enter symmetrically, and since if

uZw', w'Su, it follows that

T[T oS MW COos nudwdwy , ,
‘(O “0 \/00/_ COS ¥V — SS/ cos 10=LP771,7L'Q nea Or LP e Qﬁl.ﬂ

according as uSu’, where L is independent of » or w’. Hence L may be determined
by giving particular values to » or »". Suppose  at the origin then

cos mw cos nvdwdv
A/ CC’ — cos v—SS’ cos w

" cos médo
2n+1
0 (C'—Scos )72

To find the value of this expand the expressions under the integrals in ascending
powers of §’, which is ultimately to vanish.

LQm.n= 1imﬁ,__~0 j 0 J. 0

Then if
p<im r cos mw cos? wdw=0
0
p=m f " cos mw cos™ wdw= ;T—m
0
p>m  the integral is finite =1 (say)
Hence

J’ ™ cos nvd oS mw { 88" cos w >m + }
LQ, = lim QJJ V/CO=cos v CC' — cos v
ma =

S’m n @
"{{ cos mb <,8m co8 ——— >

C/m
where
. X 1.35...@m—1
a,= co. of & in (1—u)™* = 24753 m—1)
wil 2+ 1)@n+3) ... 2n+2m—1)
Bm—_" 29 3 (1 —CU) 217[777/
Hence

cos nudv

m
L Yy 2m+1
Qm = Bm . (C — cos 1)) 12
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This at once gives us an expression for Q,,,, viz.:

cos nudv

v
Qm.az = MSmS Sm+1

o (C—cosv) 2

where M is some constant depending on m.n. This has now to be found. If we

write ‘
T cos nudv
Um.n= N 2m+1
o (C—cosv) 2

it is easily shown that
(2n+1=—-2m)U, 4 —40CU,, .+ (20—14+2m)U,,,_;=0
This will agree with (27) if

_(Cm+20—-1)...2m+1)

NUon= (2n—1—2m) ... (1—2m) Qo
Hence
__(@m—=1+2n)... 0 2m+1)
T (2n—1—2m) ... (1—2m)
and
Q NS dv
e (C— cos v)zm%l

where N is a function of m only.
Here again this is found to satisfy

(2m+ I)SQm-{-l.O'— 4mCQm.o+ (277?'— 1 )SQm—Lo: 0

which agrees with (32) if
N=(-)"N
and
™ dv
QO'O_NJ‘O\/C —Cos ¥

But from the known value of Q,, we see that N=1/1/2. Hence

M \/2 (277;"‘"1"‘2')77/) . (1+2m) Tl . . . . (34)

Q _ (=) (2n=1=2m) ... (1—2m) Sm " cos nfdo
O(C—cos IR
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Also

%

L= yg.

—=(— )”’4/5 135 (2m—1)  (@2n—142m) ... (2m41)
- (2n—1+42m)(2n—3+2m) ... (2n+ ) (2n—1—2m) ... (1—2m)

=4/2L, , (say)

Since the distance between two points is

\/(Ca;)/é, ){CC cos (v—v')—S8’ cos (w—w')}}

Tt follows that the potential for a unit point at (v.v".w’) is

¢=£1; v/ (C=¢)(0'=¢")23L,,,P,..Q acos n(v—2') cos m(w—uw')

|

for points outside the tore u’; whilst for points inside, it is e (35)

|
¢)=61L\/(O_O)(C —C )SVELm nP,m an #COS ’)l(v—’l) ) co8 m w—w’ .J

where, when m==0 or n=0, half the above value for L, must be taken.
When =0 P,,=0 except when m=0 when P,,=u, which agrees vuth the

value found in section II.
Also P,,, behaves in a similar way to P, for increasing =, whilst P,,,,>P,... when

m is large, as is clear at once from the integral expression for P,,,.

Also since
- (" cos nBdl
Qm.noc Sm "—‘_‘—@L_‘ﬁ
0(C—cos 0)z

it is clear that when u=o Q,,=0 for all values of m.n. Also Q, ., behaves as Q.
for increasing 7.
IV.

TORES WITH NO CENTRAL OPENING.

15. In the case where the hole of a tore vanishes the functions hitherto considered
become nugatory. In this case we must have recourse to the co-ordinates already
referred to in (8). It is not here intended to develop the theory with the fulness of
the general case. The functional differential equation has been shown to be

> ) 4m —1
du? =

=0
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In this write yy=1+/uG when

2 ) 2
@G 1 iz?-—_zﬁG—%G:O

du? ' u du

the equation of cylindric harmonics (BESSEL’S functions) with imaginary argument.
Let G.H be the two particular integrals corresponding to the cylindric function J.Y
of the first and second kind. Then

Gu(nu)=J,,(nuz)
H.,.(nu) =Y ,(nur)

And the potential function can be expressed in the form
=+ 1*+v*23(A, G (nu) +B,H,(nu)) cos (nv4e) cos (mw—+B)

Many of the properties of these functions can be at once written down from the
analogous properties of J.Y. Thus

(nagym whyt

‘ nu?
Gm@u)—m{ toamr2 T 2aGn @m0 }

=lj’” cos (nu sin @—mb)df

T o

— (7%6)’”’ S 1 :r- 12w
=155, 9m—1" =), %" (nz cos @) sin™ 6d0

So also

o
= ’HZ(J'm — ﬂGm+ 1

m

du

(2

- UGm—-l - mG’m e
and
2m

G{rm+1 - _Z—; Gm+ Gm—1= 0

J

which equations the H also satisfy.

The sequence.equation has been solved by LoMMELL,* so as to fully express G,
and H, in terms of G, Gy, Hy, H. But in any particular case where the values are
required it is best to calculate successively by means of the sequence equation direct.

In the space within a tore % can become infinite, viz.: at the origin, and is never
zero ; this is evident from the equation

—_apr

* ¢ Studien tiber die Bessel’schen Functionen,’ p. 4.
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Without, it may become zero along the axis but infinite nowhere, for as it approaches
the origin » must approach a finite limit which depends on the circle along which it
moves. Now when w is infinite, G is infinite. Hence the G functions belong to space
outside a tore. We are led to conclude that the H functions belong to space within.
This may be proved as follows : Amongst many integral expressions known for Y, one
is given by HEINE,* viz. :
v J'w gix cosh 6,70
0

This suggests

0

Ho(u) =AI e cosh 9d0

0
This is easily verified, for substituting in the differential equation it has to be
shown that
. ® . 1
[ (sinh® 0—; cosh @)e=" st ’df=0
0

which, on integrating the first term by parts follows at once. From this form we

gather that o
when ©=0 Hozj df=
0

U= o0 H,=0

»

whence H, is the proper function for space within a tore. ~From the sequence
equation this is seen to apply also to the H,, in general.

V.

EXAMPLES AND APPLICATIONS.

In this section I propose to give a few examples of the application of the foregoing
theory, to the solution of physical problems:

16. Potential of a ring whose axis vs the same as the critical circle.

Let 2" be its distance from the plane of the critical circle, b its radius, «/, v its

dipolar co-ordinates.

Then the potential is
do

2’“40 N/ =22+ p*+b*—2bp cos @

This expanded takes the form
v/ C—c¢2A,P, cos (nv+a,)

for points outside the tore u’.

* ¢ Kugelfunctionen,” p. 191.
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For a point on the axis, =0 P,== and the above become respectively

Quars/T—c8
V/2(0" = cos v— )

- and 7/ 1—cSA, cos (nv+a,).

It will therefore be more convenient to determine the A,, o, from this simplified
case. ,

It is clear that 1/{C’— cos v—1v'}* can be expanded in a series of powers of cosines
of (v—v') and therefore of multlples of the same.

Hence
o= —nv
and
2/1,8'
| \/ZZ@:M_EA% cos nd
Therefore
u,u,S"[ ™ cos nddl
”—\/Z £/ C'—cos 0
= 4}LS’Q n
But

TA,=2u8'Q’,

Hence in general the potential for points outside the tore u” is
4uS/ C—
="

Consequently the potential for points within the tore ' is

H
) (SPQ cos n(o—0)—PRQ} . . . . . (360)

4us'

p= <OC: ,) {3PQ, cos n(v—2)—3P Qe . . . . . (36D)

Both these series have been shown to be‘ convergent.
If M be the whole mass of the ring
' as’
M= 277'1)/1,:: 277#6'::07

It follows as a corollary that the potential for a mass M on the axis is, for all points
not on the axis, '

AR ity Quoos nlo—)—4Q} - - . . ()

Also, putting M at 0.0 and —M at 0.—’, and making v’ zero and M infinite, the
potential for a uniform field of force parallel to axis is

p/C=cS nQusinne . . . . . . . . . (38)

MDCCCLXXXI, 40
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17. Electric potential of a tore and its capacity.
Let V be the constant potential of the tore (#’). Then (A,, «,) must be determined,

so that .
¢=1/C—c3, AP, cos n(v+a,)

may="V for all values of v when v=u’".
Hence «,=—=0 and
+ oy (008090
xA,P ,3—-2Vj‘0 O —aos b
=2,/7VQ,

7A P \=,/2VQ),

and

) v Q
,,qS:..\{.rw,/ _0{2211,, P, cos nv+ “P}» B 19
. . . . ) : . . . (C+S)n
This series is easily seen to be convergent, since (§ 10) it is less than 3 (O 8y

where C+S<('+§". »
To find the capacity of the ring we must take the surface integral of ﬁ %‘é over it

So, ¢ denoting the capacity,
2
1 [ 217 , O du

=V ”bu an
\/2058 j’ 1 dP,] Y
— b3 _612\/— ,;+\/c-c P, 08 nodv

or dropping the dashes, and writing

2P, —CP)

du
e R - S v
Now
[ =y 5,
and
Q. —0Q)
whence

2 1
foeed ;?2(27’&-}‘ 1 )(Pn-;-lQn—PnQn-f-l)iS;

=4a,21?:+2a%’by(24) N 710
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This expression for the capacity in an infinite series is more convergent than Se=",
When the section of the ring is not very large compared with the radius of its
circular axis,

q= 2a<%‘j + 2%) very nearly®

T —F
_2a<F+2 E) l
or . Cv o (40a)
| gt T |
where
VO RE=2
2oV N T
k—2R+\/R2 P

Measured in terms of the capacity of a sphere whose radius is equal to a tangent
from the centre to the tore, the capacity is

oSEF —mr
2 EF

When R=3r the omission of the term depending on %—2 introduces an error of about
2
"27 per cent.
k* may be expressed in terms of the angle subtended at the centre by the tore, viz.:

if this angle be 2,

- 2 cos o — oS s o
-= o sec
T 14cosa 2

- “
I'=+tan 3

When
k' =sin 3° (about r=-+R) q="733 X capacity of above sphere
k' =sin 6° (about r= § R) q=1898X% ...

18. We may find the potential also for the electricity induced on a tore, put to
earth, by a charged circular wire with the same axis as the tore. For the potential
of the wire (u/, v') for points within (") is (36b)

4,u,S

\/ C—c{3P",Q, cos n(v—2)—1P"Q,}
whilst that for points outside the tore (u,) due to the charge induced on it is

$o=1/C—cSA,P, cos n(v—a,)

* The expression given in the ¢ Proceedings’ is incorrect.

40 2
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and the condition is that when u=u, ¢, +¢,=0

oW

, A
S0=, AnPonz - TP/nQOm and A0P00= PIOQO

Whence
28— °Q 0 n Torpo 0
=2, _cz{z (POQu—QUP.) cos n(o—2) 4 (P Q= QP | - (41)

and the general solution when the tore is insulated and has a charge of its own is
found by adding the potential found in the last article.

Also if the section of the wire be very small we can find the capacity of the system
approximately, by supposing the wire to coincide with one of the equipotential surfaces

near it.
19. As an example of the use of tesseral functions with constant surface conditions,
we will take the problem of the electrical induction on a tore under the influence of a

point arbitrarily placed. We lose no generality by supposing it in the plane of (x2);
let then its co-ordinates be (v'.v".0). The potential due to this for points within u’

has been found at the end of Section I1l., viz.,
gbz'g\/ (C=)(C"=¢) 2Ly’ Q. cos maw cos n(v—1v")
As before, the potential of the induced charge will be of the form
d=+1/T=c¢2A,,.P,. cos mw cos n(v—1v")

and (the tore being )
¢ — ,
Am,nPOm,n: — - v @ -¢ Lﬁl nP . MQOm,n

¢= “M:QEL '''''' o * (P Q= QunPiu) cos 1w cos n(v—v') . (42)

When the point is on the axis, all these terms vanish (§ 14) except for m=0.

If necessary, also, the capacity of a tore and a very small sphere can be found
approximately from these formulee.

20. One more example illustrating the application to cases of differential surface
‘conditions may be given. Take the case of a tore moving parallel to its axis through
an infinite fluid with velocity V. Here the conditions are that if ¢ be the velocity
potential for fluid moving past it,

b=—Vztd¢,
and

b¢

=0 when u—-uo
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The expansion for z has already been given, viz. : (for points not on the axis)
o/ C—c 35 nQ, sin nv

To determine p we notice that at the critical circle (as everywhere on the plane
of xy)
d¢ dv _

dw dn -V

Taking a point outside the critical circle

—V= F«(O —1) 5n2Q,

The easiest way to calculate this is to make the peint approach the critical circle,
t.e., u=o0 , when

—V="lim (C—1)'Q,

dae
(C+8 cosh 6)*

4o
Ta ) 2%cosh? 3 @ 4./2
0

277/2QM—-

=2 Jim (O— 1)[

which gives the theorem

=(C—=1)"=— cosech3

4¢) =16

Hence

P= %‘—qur/-%VJ C—c2(A,P, sin n(v—a,)—nQ, sin nv)

o¢

where 5, =0 when uw=1, for all values of v. The terms in cos nv would merely

increase ¢ by the series for a constant, we may therefore without loss of generality
put «,=0, and then, using dashed letters to denote differential coefficients,

1 =
13 oV ;t 2{5\7@ (A,LP,L nQ,L)—I—J C—o(AP"—nQ ,L)} sin 7w

=0 when u=u,
. S{S(AP,—nQ,)+2(C—c) (AP, —nQ)} sin no=0
A?L+1P/7L+1 + A/n-lP/n_l - AM(SPﬂ—I_ ZCP/n)
=n+1)Quy+ (n—1)Q"_; —1(SQ.+2CQ",
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Now it is easily shown that

Py +P—(SP,4+2CP")=0
with a similar formula for Q,, we may hence write the above equation
(An+1 - An)P/M. 1= (Au— An_l)P’n_q = Q";H. 1= Q’u—l

with initial equation

(AZ_AI)P/.‘z—AlP/ =Q’2‘Q,o

To get a first integral of this write the successive equations in order, multiply those
containing P’,,;, P’,_; by P’, and add, we get

(A —ANP Pu—A PP =P Q1 — P Q+ 3 (P Q1 — P Q)

=P"Q " — P Q + En 1(2”'+1)

9/”+1 + (AIPII _ QII)P'O_l_ZT n?
P/n+1 P,nPlau-l 2 P/nP/n +1

. A}L+1_-A}L=

Put
’ ’ ™ ”
(A'].P 1= Q l)P/0= 5“., Plnzwu,

then since

™ ’ 7 ’
?j 27L+1(P nQ M+1_PM+1Q n)
n+a
AIL+1—AM—w/l+1+2 +1( el Ln
= 1! {(n+ 1Pt o), — (PP to)x,}
2n+1 v+l "
Hence
(n+1)*+a 7"“+oc 1+a
An+1"A1—'_2‘”“+“1—— R 2247~ 3 N
and
(n+1P2+a n 72 +o¢
An+1=—m n+1+221 Ay X=Xy,

A, is undetermined to the extent of a; but since the velocity potential must be
finite everywhere, @ must be chosen so that the series SA,P,(u) shall be convergent.
It will first be necessary to prove that A, is finite when n is large ; a must then be
chosen so that A, vanishes for n infinite, and lastly, it will remain to show that with
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this value of « the series SA,P,(u) is convergent, from which the convergency of ¢
will flow at once. Now

—_— — _9171 Qi — CQu
" CP,—P,_,
3o <8221 ’1‘%@ “2 Q_l
Both the series on the right are finite, hence so also are —2 x, and 2‘,1 " 2+ “lx“ and

A, tends to a finite limit with increasing n. It is therefore possible to give & a value
which shall make this limit zero. It is given by

o 712+“

221 @_—lm,.—awoz 0
whence
n? +u © 724 o
An‘ 1% 22,,14‘;3“_’1%........(43)

Lastly it remains to consider the convergency of the series SA,P,(1z). When 2 is

1 o q .
(n-zl- i;— xxnﬂ which is

very large —A,,, tends to the limit ——

(417 4 o)
n+1)S2\DP, 4 P,

Also since u<u, P,(v)<P,. Hence the series under consideration is

‘ 1 n4a [Q. P, Qu_1Pa
< 2(%_1){ O }

n— 1 n—9
The sum of the first set of terms is <(C+S) En +e

2
<C(CS-: ) E;n__i__iQn_l ; both of these are finite. Hence the sum 3A,P, is finite and @

Jortiors the sum SA, P, (u) sin no. ,
Finally then the velocity potential for fluid motion due to a tore moving parallel to
itself through a fluid at rest at infinity is

Qn_z, and of the second set is

p=2V2V  /G=i3T A P, sin o
where A, is given by (43) and
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w 7 (‘Q’,
g1 v
o= P a
—steipt e g
and where P’,. Q’, stand for aF, (u”), Q1)
dat, da,
We may now find the energy of the fluid motion. This is, the density of the fluid
being unity,
_ dan’ d¢
T—_j 27Tpdvd (‘bdn
and
dw_ o
dv~ C—c
Ip_ iy >
dn™— 7—VC—0
__aS
P=0
T AV L
S T==27a?VS jo (C—(})Sd} v
omi
=—8,/20" V'8P, [ TSy
o (C—=0¢)f
16\/2 BV? 1d r”cos (n—1)w— cos (n+1)v
v SEA”P”du<S du> O dv
But
7 cos nw -
[ . \/Cﬁ__—édv_Q«/QQn
== ovegsa P, © L, —q
ek Ty CL 3 n ’d S(Qﬂ—1 Qz-ﬂ)
But

Q/n—l - Q/ﬂ»+]_ = 272‘SQ9L

T="2 VS A P, (44)

which is more convergent than the series for ¢.

In a similar manner may be found the velocity potential for any motion of trans-
lation, or the magnetism induced in a uniform field of force
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[ September, 1881.—At the suggestion of one of the Referees I give a few additional
numerical illustrations. The first is the ratio of the density of electricity at a point
on a tore furthest from the axis to that at a point nearest the axis. The potential
due to the distribution of electricity on the tore is given by (39). The normal force

at any point of the tore is
opou__Cocdd

duon~  a bu

whilst for points furthest from the axis w=uw/, v=0, and for points nearest u=1v’,
v=m. Putting these in, remembering that 28dP,/du=(2n41)(P,.,—CP,) and
@2n+1)(P,,,Q.—P.Q.41)= 277, it is easily shown that the above ratio is

:_<C+1>2 <9}) Pl 1:51-_ '»‘>_%(Q0+Q1)‘2(O+1)2(—)”72Qn
o 2”<2E,+E+iv;+} . ~>+%(Q0—Q1)"2(C—1)2nQn

If the first n sequence equations in Q be added together there results
4 (C —1 )2:7,‘Qn= (271 + 1) (Qn+1 - Qn) + QO - Ql

whence 4(C—1)51Q,=Q,—Q,
Further, putting (—)"Q,=g., the sequence equation for ¢ is

(2n+1)q,,, +4nCq,+(2n—1)q,_,=0

whence as before
4O+ DS =) Q=4 (C+1)Sng, =g, — = —(Q+Q)

Flnally then the ratio of the densities is

( )n
<1 +k’>321> +21 P,

1= 1
2P0+21Pn

If terms higher than P, be neglected this is

1+k’ SE—21'F
E+42KF

I have not been able to find a finite expression for 1/P, and 3(—)/P,, but when
the ratio of 7 to R is very small, the first two terms are sufficient. In any other case
MDCCCLXXXI, 4 p
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we can easily find the limits of error produced by neglecting terms after a given one.
Thus suppose all after P, be neglected, then § 10

1 1 1 1
P,” C+8 P, ~CP,,
whence it follows that

| w1
=% P, (=)D,

7 +11/P >

Similarly it may be shown that, » being odd

s® " K 1=3k—=2k? 1
(=)= —azp

o’ 14+42\2 Y4 l
<iy\\1=w2) T1Zi2 (D,

For the two cases of &= sin 3° and &'= sin 6° (corresponding very nearly to R=107
and 5r respectively) the ratios are 5171 and *2656.
The ratio of the velocity of the fluid at the centre of a tore to that of the tore itself

when it moves without cyclic motion, parallel to its axis, is easily found. The point is
. . : od d
given by w=0 v=n= which makes P,==. The velocity of the fluid = of d;;

_Mg V23 A, (=)

therefore ratio = —163;(—)"nA,

In the table below are given the values in two cases of a, A, A,, T" (the effective
mass of the fluid measured in terms of the fluid displaced), and V', the ratio of the
velocity at the centre, to that at an infinite distance when the tore is held at rest in

the stream.

W « A A, T V'
sin 3° —-00645 —-00216 —+00000 99995 1:03456
sin 6° —-01868 —-00871 —+00007 1:09449 113712

Suppose the tore held in a uniform field of electric force parallel to its axis. The
potential of the field is

p=pz
=t \/Z\/ (C—¢)=nQ, sin nw
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Hence, suppesing the tore to be at zero potential and to have no charge, the
potential of the disturbed field is, dashed letters denoting functions of «’,

=22 /(C—)zn <Qn—-%—” P,,) sin

The density at any point of the tore is

s P [ oy P
= ?-(C c)EP,n{Pn o Vi " ¢ sin

/"‘\/é AT n .k '
<y (C'—c) EP’,, sin nv

Now at the points where the osculating plane touches the tore z=» and p=R,
whence

C—c¢=Ssorc¢=1/C  s=8/C

The greatest density on a sphere éimilarly influenced is :i:—br The ratio is then

_4/28[ S | 48
=47 Slew Fow,* )

The value of this ratio for the cases already considered are
for &'= sin 3°, 675
,, k= sin 6°, ‘698
When the direction of the electric field is perpendicular to the axis, its potential is

S cos w
P1=pp COS W=pa— =

Hence clearly the functions for the expansion of this are the tesseral functions, Py,
Q,.., and the conditions, since the potential holds for space outside the tore, are that

pasgﬁfg—l— v/ C—c cos wSA, Py, cos no=0

when u=1v’ for all values of w.
4 p 2
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Hence
’ Teosnv L
wA, P+ Q”CLS,[O(C——G)% dv=0
or
’ d ’ a
wA,P 1 4#0&&;’(/((;), O,nx/Z) =0
and
A =22 0 1) Qg1 — CQ)
-1 WS/P,Ln 0.n+1 0.
But

A= ﬂi\“/‘?(Q,o.l —CQ0)

0TS
From the first of (32a)

28 d

SP].n: PO.n-rl - CPO.'nzm ZZ’;(K ().12)

which enables us to write the above in several ways. As before, the densities of
electricity induced at points (u.0.0) and (u".7.0) are easily found.]



